## ELEC50001 – Circuits and Systems

### 2020 - 2021

Answer ALL questions.

There are THREE questions on the paper.

Question ONE counts for 50% of the marks, other questions 25% each

Time allowed: 2 hours

#### **Information for Candidates:**

The following notation is used in this paper:

- 1. Unless explicitly indicated otherwise, digital circuits are drawn with their inputs on the left and their outputs on the right.
- 2. Within a circuit, signals with the same name are connected together even if no connection is shown explicitly.
- 3. The notation X[2:0] denotes the three-bit number X2, X1 and X0. The least significant bit of a binary number is always designated bit 0.

1. (a) Part of the datasheet for MCP601, an operational amplifier, is included at the end of this paper as Appendix A, and is also provided as a separate file for your convenience.

Based on the information available, answer the following questions with appropriate justifications.

(i) Figure 1.1(a) shows the MCP601 connected as unity gain buffer. Sketch the output signal  $V_{OUT}$  if the input signal  $V_{IN}$  is a symmetrical digital clock signal at a frequency of 100kHz with low and high logic levels at 0V and 3.3V.

[4]

(ii) What is the amplitude of  $V_{OUT}$  if  $V_{IN}$  varies between 1.1V and 1.2V and is a 2.8MHz sinusoidal signal with a DC offset?

[3]

(iii) Figure 1.1(b) shows a non-inverting audio amplifier circuit using MCP601. Choose the values of the resistors R1 to R4, C1 and C2 such that the amplifier provides a gain of 10 for signals in frequency range from 10Hz to 20kHz. Explain the reasons for your choices.

[5]



Figure 1.1(a)



*Figure 1.1(b)* 

- (b) Internet Protocol (IP) address version 4 (IPv4) is specified as a 32-bit number divided into four 8-bit sub-addresses as shown in *Figure 1.2*. The address range 192.168.0.0 to 192.171.255.255 is to be reserved for private use.
  - (i) If the IP address is available as a digital signal IP[31:0], design in the form of a Boolean equation a decoder circuit that produces high active output signal Y whenever the IP address falls within the address range above.

[4]

(ii) Implement this decoder design in synthesizable Verilog HDL.

[4]



(c) <u>Figure 1.3</u> shows the interface definition for an up-down counter *updn* where the counter output *value* is incremented by one every time a rising edge is detected on *tick* if *up* is high, and is decremented by one if *up* is low. The output *value* is limited to a range between 0 and 100 and does not wrap around when these limits are reached.

Design the *updn* module in Verilog HDL.

[8]

| 1 | module updn (tick | , up, value) | ;                               |
|---|-------------------|--------------|---------------------------------|
| 2 |                   |              |                                 |
| 3 | input             | tick;        | <pre>// clock signalinput</pre> |
| 4 | input             | up;          | // high to count up             |
| 5 | output [6:0]      | value;       |                                 |
| 6 |                   |              |                                 |

Figure 1.3

(d) In the circuit shown in *Figure 1.4*, A and B are combinational logic blocks with propagation delays  $t_{d_A}$  and  $t_{d_B}$  respectively, where  $0.4\text{ns} < t_{d_A} < 0.8\text{ns}$  and  $0.2\text{ns} < t_{d_B} < 0.4\text{ns}$ .

Flip-flops FF1 and FF2, both clocked by a symmetrical clock signal CLK, have a clock to Q delay  $t_{cq}$  of 0.5ns, setup-time  $t_s$  of 0.5ns, and a hold-time  $t_h$  of 0.9ns.

(i) By considering only the setup-time constraints, calculate the maximum operating frequency of the clock signal CLK for reliable operation of this circuit.

[4]

(ii) Show that there is hold-time violation for FF2 but not for FF1.

[4]

(iii) FF2 is replaced with a negative edge trigger flip-flop, and all timing constraints remain as before. Calculate the new maximum operating frequency of CLK and show that there is no longer a hold-time violation for FF1 and FF2.

[4]



Figure 1.4

- (e) *Figure 1.5(a)* shows the Verilog implementation of a module *digital\_block* with a clock input *clk*, a 10-bit input *n[9:0]* and an output *out*.
  - (i) Sketch a block diagram showing the function of *digital block*.

[5]

(ii) This circuit is driven by a 50MHz clock signal and an input N as shown in *Figure 1.5(b)*. Sketch the output signal Y. State any assumption used.

[5]

```
module digital block(clk, n, out);
 1
 2
                                        // clock signal
 3
          input
                           clk;
 4
          input [9:0]
                          n;
 5
          output
                           out;
 6
          reg [9:0]
 7
                           ٧;
 8
          reg [5:0]
                           cnt;
 9
          reg
                          out, tick;
10
11
          initial v = 10'b0;
12
          initial cnt = 6'd49;
13
14
          always @ (posedge clk)
15
    \Box
             if (cnt == 6'd0) begin
                 cnt <= 6'd49;
16
17
                 tick <= 1'b1;
     L
18
                 end
19
    \Box
             else begin
20
                 cnt <= cnt - 1'b1;</pre>
21
                 tick <= 1'b0;
22
                 end
     23
24
    \Box
          always @ (posedge tick) begin
             if (v < 10'd999)
25
26
                 v \le v + 1'b1;
27
             else
28
                 v <= 10'd0;
29
             out <= (v < n);
30
          end
31
      endmodule
32
```

*Figure 1.5(a)* 



- 2. *Figure 2.1* shows the state diagram of a Finite State Machine (FSM) with four states encoded using two state bits S1 and S0, an input P and an output Q.
  - (a) Draw the state transition table including the output for this state machine.

[5]

(b) The FSM is to be implemented using an Intel MAX10 FPGA using three Logic Elements LE0, LE1 and LE2. Each Logic Element consists of a 4-input lookup table (LUT) and an optional D-type flip-flop. *Figure 2.2* shows the circuit for the state transition logic of the FSM with LE0 and LE1. Derive the truth-tables for LUT0 and LUT1.

[7]

- (c) Draw the circuit of LE2 which provides the output Q and derive the truth-table for LUT2. [5]
- (d) Write in Verilog HDL an implementation of this FSM using one-hot encoding.

[8]



Figure 2.1



Figure 2.2

3. (a) *Figure 3.1* shows an R-2R ladder network. Derive from first principles and with clear justifications the values of  $I_0$  to  $I_3$  and  $V_0$  to  $V_3$  in terms of  $V_{REF}$  and R.

[5]

(b) *Figure 3.2* shows a ladder network which is NOT an R-2R structure. Derive from first principles and with clear justifications the values of  $I_0$  to  $I_3$  and  $V_0$  to  $V_3$  in terms of  $V_{REF}$  and R for this new ladder network.

[10]

- (c) The ladder network in *Figure 3.2* is used to implement a 4-bit DAC as shown in *Figure 3.3*. Explain how this circuit works as a non-binary weighted DAC converter.
  - [5]

[5]

(d) Assuming  $V_{REF}$  is 5V, and the switch control values X3:X0 is 4'b1010 as shown, what is the voltage at the output of the op-amp?





Figure 3.2



Figure 3.3

# MCP601/1R/2/3/4

#### 1.0 ELECTRICAL CHARACTERISTICS

#### Absolute Maximum Ratings †

| V <sub>DD</sub> – V <sub>SS</sub>              | 7.0V                              |
|------------------------------------------------|-----------------------------------|
| Current at Input Pins                          | <u>+</u> 2 mA                     |
| Analog Inputs (VIN+, VIN-) ++ VSS -            | - 1.0V to V <sub>DD</sub> + 1.0V  |
| All Other Inputs and Outputs V <sub>SS</sub> - | - 0.3V to V <sub>DD</sub> + 0.3V  |
| Difference Input Voltage                       | V <sub>DD</sub> – V <sub>SS</sub> |
| Output Short Circuit Current                   | Continuous                        |
| Current at Output and Supply Pins              | ±30 mA                            |
| Storage Temperature                            | 65°C to +150°C                    |
| Maximum Junction Temperature (T <sub>J</sub> ) | +150°C                            |
| ESD Protection On All Pins (HBM; MM)           | ≥ 3 kV; 200V                      |
|                                                |                                   |

**†** Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

++ See Section 4.1.2 "Input Voltage and Current Limits".

#### DC CHARACTERISTICS

| <b>Electrical Specifications:</b> Unless otherwise specified, $I_A = +25^{\circ}$ C, $v_{DD} = +2.7 v$ to +5.5 v, $v_{SS} = GND$ , $v_{CM} = v_{DD}/2$ , $V_{OUT} \approx V_{DD}/2$ , $V_I = V_{DD}/2$ , and $R_I = 100 \text{ k}\Omega$ to $V_I$ , and CS is tied low. (Refer to Figure 1-2 and Figure 1-3). |                                   |                       |                      |                       |            |                                                                       |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|----------------------|-----------------------|------------|-----------------------------------------------------------------------|--|--|--|
| Parameters                                                                                                                                                                                                                                                                                                    | Sym                               | ym Min Typ Max U      |                      | Units                 | Conditions |                                                                       |  |  |  |
| Input Offset                                                                                                                                                                                                                                                                                                  |                                   |                       |                      |                       |            |                                                                       |  |  |  |
| Input Offset Voltage                                                                                                                                                                                                                                                                                          | Vos                               | -2                    | ±0.7                 | +2                    | m∨         |                                                                       |  |  |  |
| Industrial Temperature                                                                                                                                                                                                                                                                                        | Vos                               | -3                    | ±1                   | +3                    | m∨         | T <sub>A</sub> = -40°C to +85°C (Note 1)                              |  |  |  |
| Extended Temperature                                                                                                                                                                                                                                                                                          | Vos                               | -4.5                  | ±1                   | +4.5                  | m∨         | T <sub>A</sub> = -40°C to +125°C (Note 1)                             |  |  |  |
| Input Offset Temperature Drift                                                                                                                                                                                                                                                                                | $\Delta V_{OS} / \Delta T_A$      | —                     | ±2.5                 | —                     | µV/⁰C      | T <sub>A</sub> = -40°C to +125°C                                      |  |  |  |
| Power Supply Rejection                                                                                                                                                                                                                                                                                        | PSRR                              | 80                    | 88                   | —                     | dB         | V <sub>DD</sub> = 2.7V to 5.5V                                        |  |  |  |
| Input Current and Impedance                                                                                                                                                                                                                                                                                   |                                   |                       |                      |                       |            |                                                                       |  |  |  |
| Input Bias Current                                                                                                                                                                                                                                                                                            | I <sub>B</sub>                    | —                     | 1                    | —                     | pА         |                                                                       |  |  |  |
| Industrial Temperature                                                                                                                                                                                                                                                                                        | I <sub>B</sub>                    | —                     | 20                   | 60                    | pА         | T <sub>A</sub> = +85°C (Note 1)                                       |  |  |  |
| Extended Temperature                                                                                                                                                                                                                                                                                          | I <sub>B</sub>                    | _                     | 450                  | 5000                  | pА         | T <sub>A</sub> = +125°C (Note 1)                                      |  |  |  |
| Input Offset Current                                                                                                                                                                                                                                                                                          | I <sub>OS</sub>                   | —                     | ±1                   | —                     | pА         |                                                                       |  |  |  |
| Common Mode Input Impedance                                                                                                                                                                                                                                                                                   | Z <sub>CM</sub>                   | —                     | 10 <sup>13</sup>   6 | _                     | Ω∥pF       |                                                                       |  |  |  |
| Differential Input Impedance                                                                                                                                                                                                                                                                                  | ZDIFF                             | —                     | 10 <sup>13</sup>   3 | _                     | Ω∥pF       |                                                                       |  |  |  |
| Common Mode                                                                                                                                                                                                                                                                                                   |                                   |                       |                      |                       |            |                                                                       |  |  |  |
| Common Mode Input Range                                                                                                                                                                                                                                                                                       | VCMR                              | V <sub>SS</sub> – 0.3 |                      | V <sub>DD</sub> – 1.2 | V          |                                                                       |  |  |  |
| Common Mode Rejection Ratio                                                                                                                                                                                                                                                                                   | CMRR                              | 75                    | 90                   | —                     | dB         | V <sub>DD</sub> = 5.0V, V <sub>CM</sub> = -0.3V to 3.8V               |  |  |  |
| Open-loop Gain                                                                                                                                                                                                                                                                                                |                                   |                       |                      |                       |            |                                                                       |  |  |  |
| DC Open-loop Gain (large signal)                                                                                                                                                                                                                                                                              | A <sub>OL</sub>                   | 100                   | 115                  | —                     | dB         | $R_L = 25 \text{ k}\Omega \text{ to } V_L$ ,                          |  |  |  |
|                                                                                                                                                                                                                                                                                                               |                                   |                       |                      |                       |            | $V_{OUT} = 0.1V$ to $V_{DD} - 0.1V$                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                               | A <sub>OL</sub>                   | 95                    | 110                  | —                     | dB         | $R_L = 5 k\Omega \text{ to } V_L$ ,                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                               |                                   |                       |                      |                       |            | $V_{OUT} = 0.1V$ to $V_{DD} - 0.1V$                                   |  |  |  |
| Output                                                                                                                                                                                                                                                                                                        |                                   |                       |                      |                       |            |                                                                       |  |  |  |
| Maximum Output Voltage Swing                                                                                                                                                                                                                                                                                  | V <sub>OL</sub> , V <sub>OH</sub> | V <sub>SS</sub> + 15  | _                    | V <sub>DD</sub> – 20  | mV         | $R_L = 25 k\Omega$ to $V_L$ , Output overdrive = 0.5V                 |  |  |  |
|                                                                                                                                                                                                                                                                                                               | V <sub>OL</sub> , V <sub>OH</sub> | V <sub>SS</sub> + 45  | -                    | V <sub>DD</sub> – 60  | mV         | $R_L = 5 k\Omega$ to $V_L$ , Output overdrive = 0.5V                  |  |  |  |
| Linear Output Voltage Swing                                                                                                                                                                                                                                                                                   | V <sub>OUT</sub>                  | V <sub>SS</sub> + 100 | _                    | V <sub>DD</sub> – 100 | m∨         | $R_L = 25 \text{ k}\Omega \text{ to } V_L, A_{OL} \ge 100 \text{ dB}$ |  |  |  |
|                                                                                                                                                                                                                                                                                                               | VOUT                              | V <sub>SS</sub> + 100 | _                    | V <sub>DD</sub> – 100 | m∨         | $R_L = 5 \text{ k}\Omega \text{ to } V_L, A_{OL} \ge 95 \text{ dB}$   |  |  |  |
| Output Short Circuit Current                                                                                                                                                                                                                                                                                  | I <sub>SC</sub>                   | _                     | ±22                  | —                     | mA         | $V_{DD} = 5.5V$                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                               | I <sub>SC</sub>                   | _                     | ±12                  | —                     | mA         | $V_{DD} = 2.7V$                                                       |  |  |  |
| Power Supply                                                                                                                                                                                                                                                                                                  |                                   |                       |                      |                       |            |                                                                       |  |  |  |
| Supply Voltage                                                                                                                                                                                                                                                                                                | V <sub>DD</sub>                   | 2.7                   | _                    | 6.0                   | V          | (Note 2)                                                              |  |  |  |
| Quiescent Current per Amplifier $I_Q$ 230325 $\mu A$ $I_O = 0$                                                                                                                                                                                                                                                |                                   |                       |                      |                       |            | I <sub>O</sub> = 0                                                    |  |  |  |
| Note 1: These specifications are not tested in either the SOT-23 or TSSOP packages with date codes older than YYWW = 0408                                                                                                                                                                                     |                                   |                       |                      |                       |            |                                                                       |  |  |  |

Note 1: These specifications are not tested in either the SOT-23 or TSSOP packages with date codes older than YYWW = 04 In these cases, the minimum and maximum values are by design and characterization only.

2: All parts with date codes November 2007 and later have been screened to ensure operation at V<sub>DD</sub>=6.0V. However, the other minimum and maximum specifications are measured at 1.4V and/or 5.5V.

#### AC CHARACTERISTICS

| <b>Electrical Specifications:</b> Unless otherwise indicated, $T_A = +25^{\circ}C$ , $V_{DD} = +2.7V$ to $+5.5V$ , $V_{SS} = GND$ , $V_{CM} = V_{DD}/2$ , $V_{OUT} \approx V_{DD}/2$ , $V_L = V_{DD}/2$ , and $R_L = 100 \text{ k}\Omega$ to $V_L$ , $C_L = 50 \text{ pF}$ , and CS is tied low. (Refer to Figure 1-2 and Figure 1-3). |                     |     |     |     |                   |                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|-----|-----|-------------------|-----------------------|--|--|
| Parameters                                                                                                                                                                                                                                                                                                                             | Sym                 | Min | Тур | Max | Units             | Conditions            |  |  |
| Frequency Response                                                                                                                                                                                                                                                                                                                     |                     |     |     |     |                   |                       |  |  |
| Gain Bandwidth Product                                                                                                                                                                                                                                                                                                                 | GBWP                |     | 2.8 | _   | MHz               |                       |  |  |
| Phase Margin                                                                                                                                                                                                                                                                                                                           | PM                  | _   | 50  | —   | ۰                 | G = +1 V/V            |  |  |
| Step Response                                                                                                                                                                                                                                                                                                                          |                     |     |     |     |                   |                       |  |  |
| Slew Rate                                                                                                                                                                                                                                                                                                                              | SR                  | _   | 2.3 | _   | V/µs              | G = +1 V/V            |  |  |
| Settling Time (0.01%)                                                                                                                                                                                                                                                                                                                  | t <sub>settle</sub> |     | 4.5 | _   | μs                | G = +1 V/V, 3.8V step |  |  |
| Noise                                                                                                                                                                                                                                                                                                                                  |                     |     |     |     |                   |                       |  |  |
| Input Noise Voltage                                                                                                                                                                                                                                                                                                                    | E <sub>ni</sub>     |     | 7   | _   | μV <sub>P-P</sub> | f = 0.1 Hz to 10 Hz   |  |  |
| Input Noise Voltage Density                                                                                                                                                                                                                                                                                                            | e <sub>ni</sub>     | _   | 29  | _   | nV/√Hz            | f = 1 kHz             |  |  |
|                                                                                                                                                                                                                                                                                                                                        | e <sub>ni</sub>     | _   | 21  | _   | nV/√Hz            | f = 10 kHz            |  |  |
| Input Noise Current Density                                                                                                                                                                                                                                                                                                            | İ <sub>ni</sub>     | _   | 0.6 | _   | fA/√Hz            | f = 1 kHz             |  |  |

## MCP603 CHIP SELECT (CS) CHARACTERISTICS

| <b>Electrical Specifications:</b> Unless otherwise indicated, $T_A = +25^{\circ}C$ , $V_{DD} = +2.7V$ to $+5.5V$ , $V_{SS} = GND$ , $V_{CM} = V_{DD}/2$ , $V_{OUT} \approx V_{DD}/2$ , $V_L = V_{DD}/2$ , and $R_L = 100 \text{ k}\Omega$ to $V_L$ , $C_L = 50 \text{ pF}$ , and CS is tied low. (Refer to Figure 1-2 and Figure 1-3). |                   |                     |      |                     |       |                                                                                                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|------|---------------------|-------|---------------------------------------------------------------------------------------------------|--|--|
| Parameters                                                                                                                                                                                                                                                                                                                             | Sym               | Min                 | Тур  | Max                 | Units | Conditions                                                                                        |  |  |
| CS Low Specifications                                                                                                                                                                                                                                                                                                                  |                   |                     |      |                     |       |                                                                                                   |  |  |
| CS Logic Threshold, Low                                                                                                                                                                                                                                                                                                                | V <sub>IL</sub>   | V <sub>SS</sub>     | _    | 0.2 V <sub>DD</sub> | V     |                                                                                                   |  |  |
| CS Input Current, Low                                                                                                                                                                                                                                                                                                                  | I <sub>CSL</sub>  | -1.0                | _    | _                   | μA    | $\overline{\text{CS}} = 0.2 \text{V}_{\text{DD}}$                                                 |  |  |
| CS High Specifications                                                                                                                                                                                                                                                                                                                 |                   |                     |      |                     |       |                                                                                                   |  |  |
| CS Logic Threshold, High                                                                                                                                                                                                                                                                                                               | VIH               | 0.8 V <sub>DD</sub> | _    | V <sub>DD</sub>     | V     |                                                                                                   |  |  |
| CS Input Current, High                                                                                                                                                                                                                                                                                                                 | I <sub>CSH</sub>  | _                   | 0.7  | 2.0                 | μA    | $\overline{CS} = V_{DD}$                                                                          |  |  |
| Shutdown V <sub>SS</sub> current                                                                                                                                                                                                                                                                                                       | IQ_SHDN           | -2.0                | -0.7 | —                   | μA    | $\overline{CS} = V_{DD}$                                                                          |  |  |
| Amplifier Output Leakage in Shutdown                                                                                                                                                                                                                                                                                                   | IO_SHDN           | _                   | 1    | —                   | nA    |                                                                                                   |  |  |
| Timing                                                                                                                                                                                                                                                                                                                                 |                   |                     |      |                     |       |                                                                                                   |  |  |
| CS Low to Amplifier Output Turn-on Time                                                                                                                                                                                                                                                                                                | t <sub>ON</sub>   | _                   | 3.1  | 10                  | μs    | $\overline{\text{CS}} \le 0.2 \text{V}_{\text{DD}}, \text{ G} = +1 \text{ V/V}$                   |  |  |
| CS High to Amplifier Output High-Z Time                                                                                                                                                                                                                                                                                                | t <sub>OFF</sub>  | _                   | 100  | _                   | ns    | $\overline{\text{CS}} \ge 0.8 \text{V}_{\text{DD}}, \text{ G} = +1 \text{ V/V}, \text{ No load}.$ |  |  |
| Hysteresis                                                                                                                                                                                                                                                                                                                             | V <sub>HYST</sub> | _                   | 0.4  | _                   | V     | V <sub>DD</sub> = 5.0V                                                                            |  |  |



FIGURE 1-1: MCP603 Chip Select (CS) Timing Diagram.